Wednesday, 4 May 2016
Home »
» PENTINGNYA AERODINAMIKA
PENTINGNYA AERODINAMIKA
Pentingnya Aerodinamika : Contoh contoh Historis
Jika kita melihat sejarah, bisa dikatakan ada tiga periode sejarah berkenaan dengan perkembangan aerodinamika ini, periode pertama dimulai dari aerodinamika pada kapal tahun 1588, di mana ketika itu kapal dari spanyol memiliki ukuran yang besar dan memiliki massa yang besar, sebaliknya kapal kapal inggris memiliki ukuran yang kecil dan memiliki massa yang kecil juga. Pada periode kedua pada tahun 1901 Wilbur dan Orville wright mendisain glider yang desain aerofoil sayapnya berdasarkan data data aerodinamika yang diterbitkan pada tahun 1890 oleh Otto Lilienthal dan Samuel Pierpont Langley, sayangnya desain tersebut tidak membuahkan hasil alias gagal, pada tahun yang sama yaitu 1901 wright merancang sebuah wind tunnel yang memiliki panjang 6 feet dan luas penampang 16 inchi persegi kemudian lebih dari 200 bentuk aerofoil dan sayap yang berbeda diuji atau dites dalam wind tunnel tersebut akhirnya diperoleh data data aerodinamika. Berdasarkan data data tersebut wright mendesain kembali glidernya yang baru pada tahun 1902, aerofoilnya lebih efisien dan membuahkan hasil. Sejak saat itu terjadi perkembangan yang amat pesat di dunia penerbangan terutama dari segi aerodinamikanya. Perioda selanjutnya yaitu perioda ketiga mengenai perkembangan roket dan penerbangan ruang angkasa, penerbangan high speed atau supersonik menjadi pembicaraan yang hangat dalam aerodinamika setelah perang dunia kedua, saat itu aerodinamika sudah tidak dipandang sebelah mata lagi dalam artian sudah dihargai dalam membuat berbagai bentuk benda agar benda tersebut memiliki drag yang kecil. Pada tahun 1953 bom hidrogen diledakkan oleh amerika lalu dikembangkanlah ICBMs (Intercontinental Balistic Missile), ICBMs tersebut didesain untuk bisa melewati luar atmosfer yang memiliki kecepatan 20.000 sampai dengan 22.000 ft/s, karena kecepatan tersebut maka timbullah masalah baru dalam aerodinamika yaitu temperatur. Agar panas yang ditimbulkan seminimal mungkin, kita harus membuat alirannya laminer karena aliran yang laminer akan sedikit menimbulkan panas jika dibandingkan dengan aliran yang turbulen. Permasalah heat aerodinamic ditanggulangi oleh H Julian Allen, dia memperkenalka n konsep blunt reentry body. Pada saat memasuki atmosfer vehicles memiliki energi kinetik yang besar sebab kecepatannya sangat tinggi begitu pula dengan energi potensialnya karena ketinggiannya bertambah menjadi lebih tinggi dibandingkan ketika pada saat di permukaan bumi, pada saat sampai dipermukaan bumi vehicles memiliki energi kinetik yang cenderung kecil dan energi potensialnya nol, energinya hilang dan berubah menjadi panas pada badan/body dan panas udara disekitar body. Shock wave dan hidung pesawat membuat panas aliran udara disekeliling pesawat pada saat yang sama badan pesawat mengalami gesekan yang hebat antara boundary layer dengan permukaan sehingga menimbulkan panas. Allen berpendapat jika energi masuk atmosfer yang besar itu bisa dibuang dalam aliran udara maka panas sisa yang tidak begitu besar ini bisa diserap oleh pesawat itu sendiri, sedangkan cara untuk membuat yang panas adalah udara disekeliling pesawat yaitu dengan membuat shockwave yang kuat, misalnya dengan ujung yang tumpul, sehingga shock wave dapat membuat panas udara disekeliling pesawat.
Aerodinamika : Klasifikasi dan Kenyataan Kenyataan Praktis
Perbedaan antara padat, cair dan gas jika ditinjau dari keadaan fisik. Zat padat jika dimasukkan kedalam ruangan tertutup maka bentuknya tetap tidak berubah, zat cair jika dimasukkan kedalam ruangan tertutup maka bentuknya akan berubah sesuai dengan bentuk tempatnya, sedangkan gas jika dimasukkan kedalam ruangan tertutup akan memenuhi ruangan. Perbedaan antara padat dan fluida (gas dan cair) jika ditinjau dari tegangan dan deformasi, zat padat jika diberi gaya tangensial pada permukaannya maka akan mengalami deformasi yang terbatas, jika fluida dikenakan gaya geser maka fluida itu akan berdeformasi terus menerus, dan tegangan gesernya atau shear stressnya sebanding dengan perubahan deformasi rata rata. Selanjutnya perbedaan padat, cair dan gas jika ditinjau dari atom atom dan molekul molekul yang menyusunnya, zat padat molekul molekulnya rapat dan bentuk struktur geometri dari elektron adalah struktur geometri padat, liquid atau cair ruang antar molekulnya besar dan walaupun gaya antar molekul masih kuat tapi masih memungkinkan pergeseran molekul, sedangkan gas jarak antara molekul cenderung lebih jauh sehingga gaya antar molekulnya kecil menyebabkan pergerakan molekulnya bergerak dengan bebas. Dinamika fluida merupakan ilmu yang mempelajari dinamika dari fluida dan gas. Dinamika fluida terbagi menjadi tiga bagian yaitu hidrodinamika, gasdinamika, dan aerodinamika. Hidrodinamika merupakan ilmu yang mempelajari dinamika aliran air atau zat cair, gasdinamika aliran gas sedangkan aerodinamika mempelajari dinamika aliran udara atau aliran udara sekitar benda. Aerodinamika merupakan ilmu terapan yang banyak digunakan dalam penerapan plastik. Pada buku fundamental of aerodynamics ini kita dapat menentukan pergerakan aliran yang melalui pipa, untuk nomor 1 merupakan aplikasi dari external aerodinamik sedangkan nomor dua merupakan aplikasi dari internal aerodinamika.
Beberapa Dasar Variabel Aerodinamika
Aerodinamika diambil dari kata Aero dan Dinamika yang bisa diartikan udara dan perubahan gerak dan bisa juga ditarik sebuah pengertian yaitu suatu perubahan gerak dari suatu benda akibat dari hambatan udara ketika benda tersebut melaju dengan kencang. Benda yang dimaksud diatas dapat berupa kendaran bermotor (mobil,truk,bis maupun motor) yang sangat terkait hubungannya dengan perkembangan aerodinamika sekarang ini. Adapun hal-hal yang berkaitan dengan aerodinamika adalah kecepatan kendaraan dan hambatan udara ketika kendaraan itu melaju.
Aerodinamika berasal dari dua buah kata yaitu aero yang berarti bagian dari udara atau ilmu keudaraan dan dinamika yang berarti cabang ilmu alam yang menyelidiki benda-benda bergerak serta gaya yang menyebabkan gerakan- gerakan tersebut. Aero berasal dari bahasa Yunani yang berarti udara, dan Dinamika yang diartikan kekuatan atau tenaga. Jadi Aerodinamika dapat diartikan sebagai ilmu pengetahuan mengenai akibat-akibat yang ditimbulkan udara atau gas-gas lain yang bergerak.
Dalam Aerodinamika dikenal beberapa gaya yang bekerja pada sebuah benda dan lebih spesifik lagi pada mobil seperti dikemukakan oleh Djoeli Satrijo(1999;53).
“Tahanan Aerodinamika, gaya angkat aerodinamik , dan momen angguk aerodinamik memiliki pengaruh yang bermakna pada unjuk kendaraan pada kecepatan sedang dan tinggi. Peningkatan penekanan pada penghematan bahan bakar dan pada penghematan energi telah memacu keterkaitan baru dalam memperbaiki unjuk kerja aero dinamika pada jalan raya”.
Aerodinamika hanya berlaku pada kendaraan-kendaraan yang mencapai kecepatan diatas 80 km/ jam saja, seperti yang diterapkan pada mobil sedan, formula 1, moto gp. Untuk kendaraan-kendaraan yang kecepatannya dibawah 80 km/ jam aerodinamis tidak begitu diperhatikan, seperti pada mobil-mobil keluarga, mobil land rover dan sejenisnya. Pada kendaraan yang mempunyai kecepatan diatas 80 km/jam faktor aerodinamis digunakan untuk mengoptimalkan kecepatannya disamping unjuk performa mesin juga berpengaruh.
Gaya-gaya yang bekerja pada mobil yang bergerak(kecepatan 80km/jam)
Gaya lift up.
Yaitu gaya angkat ke atas pada mobil sebagai akibat pengaruh dari:
Speed.
Bentuk sirip.
Stream line.
Aerodinamika desain.
Down Force.
Yaitu gaya tekan kebawah pada mobil akibat pengaruh dari:
Konstruksi chasis
Desain konstruksi mobil
Penempatan beban pada mobil
Penambahan aksesories pada mobil
Bentuk telapak(kembangan ban)
Penempatan titik berat
Bobot berat dan bobot penumpang
Penempatan spoiler (front spoiler dan rear spoiler).
Gaya Turbulen.
Gaya yang terjadi di bagian belakang mobil yang berupa hembusan angin dari depan membentuk pusaran angin di bagian belakang mobil.
Gaya gesek kulit.
Disebabkan oleh gaya geser yang timbul pada permukaan –permukaan luar kendaraan melalui aliran udara.
Ground Clearance.
Yaitu gaya yang bekerja di bagian bawah mobil yang berpengaruh juga pada lift up.
Dasar Variabel Aerodinamika
Tekanan merupakan gaya normal persatuan luas yang bekerja pada permukaan yang disebabkan oleh perubahan momentum dari molekul molekul yang menumbuk permukaan benda, variabel aerodinamika yang penting lainnya yaitu density, massa persatuan volume, temperatur merupakan variabel aerodinamik yang penting untuk kecepatan yang tinggi. Temperatur gas sebanding dengan energi kinetik dari molekul gas EK = 3/2 kT. Kecepatan aliran merupakan variabel yang penting dalam aerodinamika. Pergerakan fluida untuk tiap partikel berbeda beda, tidak seperti zat padat. Kecepatan aliran dapat didefinisikan sebagai kecepatan dari aliran gas pada titik tetap B pada ruang adalah kecepatan elemen fluida yang kecil sekali yang melalui B. Kecepatan aliran mempunyai arah dan besar. Streamline adalah kurva di mana kecepatan dititik tersebut merupakan garis singgung dari kurva tersebut.
Gaya dan Momen Aerodinamik
Walau kelihatannya gaya gaya yang bekerja pada pesawat terlihat sangat kompleks tapi gaya gaya tersebut dapat dibagi menjadi 2, yaitu distribusi tekanan/ tegangan normal pada permukaan badan dan yang kedua tegangan geser pada permukaan badan. Dari kedua gaya tersebut menyebabkan resultan gaya aerodinamik R dan momen aerodinamik M.
Analisis Dimensional : Teorema Buckingham Pi
Buckingham Pi merupakan metode dalam mereduksi bilangan peubah dimensional ke dalam bilangan yang lebih kecil dari kelompok kelompok dimensional. Metode ini memungkinkan ditemukannya pi pi dalam urutan yang diinginkan tanpa melakukan sortir terhadap pangkat bebas
Pusat Tekanan (Center of Preassure)
Tipe Tipe Aliran
Aliran Kontinuum VS Aliran Molekul Bebas
Pada aliran kontinuum molekul menabrak terus menerus permukaan sehingga body tidak bisa membedakan tumbukan molekul molekulnya dan permukaan merasakan bahwa fluida adalah molekul yang kontinuum, pada aliran molekul bebas jika jarak molekulnya besar maka tumbukan dengan permukaan dirasakan tidak terus menerus dan permukaan body/badan merasakan tumbukan molekul dengan nyata
Aliran Inviscid VS Aliran Viscous
Pada fluida yang mengalir terdapat perpindahan massa, momentum, energi dari suatu tempat ke tempat lain. Perpindahan pada skala molekul menimbulkan fenomena difusi massa, viskositas, dan konduksi termal. Semua aliran molekul memperlihatkan efek phenomena transport, aliran ini disebut dengan aliran viskous sedangkan pada aliran inviscid aliran diasumsikan tidak ada gesekan konduksi panas dan diffusi.
Aliran kompresibel VS Aliran Inkompresibel
Aliran di mana ro atau densitasnya konstan disebut dengan aliran inkompresibel sedangkan jika ronya berubah rubah maka merupakan aliran yang kompresibel.






0 komentar:
Post a Comment